NUMERICAL CALCULATION OF PARAMETERS OF TWO-LAYER
DETONATION

A. M. Mardashev : UDC 534.222.2

In elongated charges of a high explosive (HE) with lengthwise channels, a super-high-speed self-sustaining
process can arise if a sufficiently intensive shock wave is propagated in the matter filling the channel. To
strengthen this effect the charge can be lined and insulated by a shell from the external medium. A channel
wave in such a system acts as an induction source and is self-sustaining at the expense of the compression of
the central flow behind the front by expanding reaction products. The general pattern as well as the principal
basis for this process — called a "two-layer detonation" — were given in [1]. Confirmation of an actual existence
of a two-layer detonation can be found in [2-4]. For the gasdynamic interaction of two layers to be more con-
crete the detonation of a cylindrical system with a tubular charge of a sensitive HE was considered in [5]. A
procedure was proposed for numerical calculation of the parameters of a two-layer detonation in the case of
the process velocity exceeding considerably the detonation velocity of the HE. An analytic calculation [6] based
on the assumption of uniform distribution of the parameters in the critical section may find very wide applica-
tion. :

1. OQutline of the Process and Formulation of the Problem. To investigate a two-layer detonation in
cylindrical systems an idealized axially symmetric process is considered as shown schematically in Fig. 1.
The scheme refers to systems with sensitive charges. In a laboratory reference system the process is sta-
tionary, that is, it does not vary with time. Two layers of matter proceed from the left with velocity U> D
where D is the usual velocity of the detonation of the HE. The shock front 0 gives rise to instantaneous initia-
tion of the HE, resulting in the detonation front 1 being formed at some angle determined by the ratio D/U. In
the domain W the central flow receives additional compression, which is essential for sustaining the mainwave.
The domain of the detonation products (DP)2 has clear-cut boundaries 2 and 3 with the central flow and the
shell.

In compliance with the described model it can be assumed that in the domains W and Q two-dimensional
stationary equations of gasdynamics are valid under quite obvious boundary conditions: on 0, the Hugoniot re-
lations; on 1, the state at the detonation front; and on 2 and 3, the conditions on the contact surfaces and the
momentum equation characterizing the motion of the shell. In the cylindrical coordinate system r —z corre-
sponding to the symmetry axis and the front 0 of the head wave, the respective equations for a polytropic gas
(v) in the domain @ are given by

udp/or -+ @dp/0z + p(du/dr -+ dw/dz -+ ulr) = 0.

udu/or + wduldz + (4/p)dplar = 0,

udo/or + wdwldz + (1/p)dploz = 0, ’ (1.1)
udp/or + ©dploz ++ wp(duldr + dw/dz + ulr) =0,

where u and w are radial and axial velocity components, the remaining notation being generally acceptable.
The independent variable z is replaced in the system (1.1) by t by means of the formula

z = Ut.

If one now omits in the equations such terms as 8(w/U—1)F/8t, one obtains a one-dimensional system of gas-

dynamic equations and a single equation for «, which is ignored from now on:
dplot + udp/or + p(du/dr + ulr) = 0,
duldt -+ udulor + (1/p)op/or = 0,

1.2
Jp/ot +- udpldr + wp(dulor + ulr) = 0. (12
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Fig. 1

The system (1.2) is at least applicable to processes such that U>D. If this condition is considered as satisfied,
we formulate the relevant boundary conditions.

The parameters on the 1 boundary are specified by the state at the strong detonation wave, which is
given by the values of %, D and of the HE density p,:

pp = L0 + 1)/x]p,, 1513=p102/(x + 1), up = Dl(x + 1). (1.3)

To obtain a boundary condition on the boundary 2 one assumes the central flow to be also a polytropic gas
(), and bearing in mind that for U>D the cross velocities are negligibly small compared with the lengthwise
ones, the flow is now described by the simple equations of a quasi-one-dimensional model:

0¥2 + [y/(y — 1)Ip/p = const, (1.4
- plp¥ = const, pe(f/r,)® = const,

where f is the current radius of the central flow whose initial radius is denoted by ry. The radius f is regarded
either as a function of t or of z depending on our requirements. The constants on the right of (1.4) are de-
termined by the parameters on the strong shock wave 0: ‘

oy = [+ D/ — Doy, py = 2/ + DIp U2, 0, = [y — Dy + 11T,

where p, is the density of the unperturbed flow. By solving the system (1.4) for p and f one finds the sought
boundary condition:

[v/(y — D2lp)r O — [ + /(7 — DI@/p)? + (o) =0.. (1-5)

On the boundary 3 one uses the momentum equation for a shell in motion, which can be obtained from the
equations of the incompressible and ideally plastic medium:

- mdu(g)/dt = p(g) — Yb/g, (1.6)

where m is the shell mass per unit area of the bounding surface; Y is the dynamic yield limit; 5 isthe variable
shell thickness; and ¢ is the current radius of the inner boundary of the shell.

To these boundary conditions on the surfaces 2 and 3 one adjoins the equations of no leaking:

df/dt = u(f), do/dt = u(g). .7

Thus, in the one-dimensional approximation and with known U the problem (1.2), (1.3), (1.5)-(1.7) is for-
mulated to determine the unknown functions p, p, u in the transformed @ domain and also to find its boundaries
f and ¢ ; having changed over to the previous variable z, their solution determines the parameters of the two-

layer detonation.

2. Computation Procedure. In the original data the free parameter U is varied and the problems thus
arising are solved numerically. The solution of each successive problem should each time be nearer to the
sought one, which differs in that in the central flow the sound velocity is reached with regard to the channel
wave. This condition is necessary for a stationary subsonic flow past the discontinuity. It can be shown
starting with Egs. (1.4) that the sound velocity in the quasi-one-dimensional flow under consideration is only
attained in a specified section of highest compression, which is called critical; its radius rx is calculated by
using, first of all, the formula

re/re = Uy — D/ (y + D) IP4AR2p/(y 4 1) /D), 2.1)

The nearness to the sought solution is judged by the difference ry —r«, where ry, is the radius of maximal
compression of the central flow in the numerical solution. The assumption is made when adopting a value of the
free parameter that the solutions depend continuously on the initial data; the latter, and also the taking into
account of some physical considerations, enable one to estimate the value of the varied parameter for the next
step of the calculation.
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One should now note some essential features of the numerical algorithm used to solve the ensuing prob-
lems. '

There are two singular points in the domain @: the initiation point at which the computation starts and
the reflection point of the detonation wave from the shell. Since the solutions of the problems in the break-ups
of planar or of curved breaks in a sufficiently small time interval are as close as desired, the unknown func-
tions in the neighborhood of these points are determined by the solutions of the following one-dimensional
problems: 1) the motion of the detonation products arising between the front of the strong detonation wave
started on the surface of a semiinfinite charge and the free surface with pressure specified on it; 2) the re-
flection of the strong detonation wave from the two-dimensional deformed obstacle.

The computational difficulties due to the moving piecewise-smooth boundary can be overcome by using
the procedure described in [7], although in a pure form it is not appropriate for finding a discontinuous solution.
Therefore, when the detonation wave is reflected, smoothing has to be carried out in parallel [8].

The numerical algorithm keeps the computational error also under control. At some instants t, by using
discrete values of the parameters of the numerical solution, the errors are determined in the integral laws of
conservation of mass and energy, which are then related to the mass and chemical energy of the charge per
unit length. The relative errors thus obtained are then printed out. All the main points of the numerical
algorithm are described in more detail in [5].

3. Computational Results. The procedure we have just described was applied to compute approximately
the parameters of a two-layer detonation in a real situation. The computations were carried out to determine
whether it is possible to obtain higher velocities at the loading of liquid hydrogen by charges of pressed Hexo-
gen. To this end, 11 variants of the initial data were adopted corresponding to cylindrical systems with dif-
ferent charge volumes contained in Duralumin, in steel, or in an absolutely rigid shell. For the liquid hydrogen
one has v =1.4 and 1.67. Two parameters relevant to the HE remain unchanged: =3 and D=8,5 km/sec.

The velocity U and other parameters of the two-layer detonation were determined by the parameters of that
problem for which ry ~rx=<0.02r;,. In solving successive problems with U reduced by 0.1 km/sec, the current
radius f assumed also the value rx, but for df /dt < 0.
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The main results obtained for y =1.4 are shown in Table 1, where p, is the density of the shell material;
ry is the outer charge radius; &, is the initial shell thickness; ¢ and A are empirical constants in the expres-
sion for the linear dependence of the shock-wave velocity on the mass velocity at the front for the material of
the shell; and zy, is the distance between the front of the channel wave and the maximal compression section of
the central field (the last parameter characterizes the error of the model due to the mass exchange between
the DP and the mass of the central flow being neglected). One can see that due to the adopted initial data the
scattering of the velocities is rather small (within 10.1-15.8 km/sec). The effect of ry, pyon zmand Uisdif-
ferent. For example, ifthe thickness of the HE grows from ry to 2ry, the distance zm, is approximately double U, in-
creasing at the same time by less than 0.5 km/sec. The greatest increment of U occurs when the shell re-
mains stationary; this can be verified by comparing the first and the last two variants.

In accordance with the assumptions of the employed model, the variants with the highest U and the lowest
Zm yield the most accurate estimates of real parameters of a two-layer detonation. Using this approach one
can find some variants with close U and zy,. I particular, the variant zm/r0 =5.6, U=10.9 km/sec corresponds
to the conditions in an actual experiment [4]. The mean velocity of the process under consideration is almost
identical with the computed one. It follows from the calculations as well as from the formulas of [6] that there
are limited possibilities of obtaining very high velocities for the systems under consideration: the limiting
velocity calculated for ry— = by using the formulas of [6] is 22.82 km/sec.

In Fig. 2 the DP limits are shown in the variables r/ry and z/r, for the variants with a moving shell and
v =1.4; the dashed line corresponds to the value of r /r,=0.7747 obtained for the specified y using the expres-
sion for ry/r; of (2.1) (the numerals are the variant ordinals). The inclination of the boundary of the central
flow to the axis of symmetry df/dz (dimensionless quantity) may assume negative or positive (but always low)
values. It can be shown that for all variants the estimate

[dffdz] < 0.21 3.1)

is valid. The corresponding estimate for the inclination of the DP boundaries is not worse than (3.1), which
justifies the use on the one-dimensional boundary conditions (1.5) and (1.6) of the DP lateral boundaries.

The computation results for v =1.67 do not differ qualitatively from those of y =1.4 and are thus omitted.

The discussed results were obtained using a grid with 20 computation nodes of the space variable. As
regards the mass and energy equilibrium, their deviations did not exceed 4.5% for variants with shells remain-
ing constant, rp, and zy, being determined with a satisfactory accuracy. Thus, the checking of the second
variant on a grid twice reduced showed that the relative error did not exceed 29. With the value of U obtained
from the original grid the change in ry, was only in the fourth decimal place and zm was reduced by 0.077 r,.
Tor this case the distributions of p/pp in some DP cross sections against the dimensionless variable p =
-9/t —1), f <r <@ are shown in Fig. 3; one can see now that for z/r;=2.6 the wave reflected from the shell
is weak, but the irregularity of pressure distribution is maintained up to the critical section (z /ry=5.6). The
irregularity of pressure distribution in the critical section is a characteristic feature of all variants and it ap-
pears strongly in the last two variants with shells not in motion. In Fig. 4, dimensionless pressure profiles in
the eritical section are shown for them, where the numerals over the curves are the ordinal numbers of the ap-
propriate variant.

4. Justification of One-Dimensional Approximation. The proposed approach for evaluating the parameters
of a two-layer detonation is based on the numerical solution of Eqs. (1.2). To justify the use of an approxima-
tion an estimate is given in the calculation range of the quantity w/U-1).

At the detonation front the axial component of veloeity is known:
0p = U — [/(x + 1)1D¥U. 4.1)

With the extension of the DP the mean velocity increases monotonically in the critical section up to the value
wx. For variants with immobile shells wx is evaluated directly using the analytic formulas of [6]1, since they
remain valid for any ratios of U and D. They also remain valid with some slight corrections for variants with
moving shells. One must know in addition the momentum G transmitted to the shell in the axial direction per
unit of time as well as ¢, which is the value of ¢ in the critical section. If the central matter does not react
chemically and the Mach numbers M of the channel wave are sufficiently high (quantities of the order of 1 /M2
can be ignored) simple equations are obtained for the velocities wx and U:

0 /U =& — Blix + 1),
D/ =1+ »¥a? — 1) — (B — )", (4.2)
@ = 1 + RZG(1 + Gy/Gy), p = RPS(x + 1),
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TABLE 2

- U, km/

ngl R z Q1/Qs Q1/To 8 ¢4 B o, /U sec

No.
1 0,041 1,042 1,54 1,6 2,042 11,0321 0,62 | 0,99 9,3
2 0,042 0,333 4,79 2,49 1,867 | 1,024 0,152 | 0,99 10,3
3 0,042 0,125 (12,0 3,57 1,518 11,020 0,124 0,99 11,3
4 0,042 0,333 3,96 2,58 2,019 11,024 0,164 0,88 10,5
5 0042 | 0125 {10012] 389 1816 |1017| 0148 | 098 | 114
6 0,041 1,042 0 1.4 1,47 14,013 0,413 | 0,98 13,0
7 1 0,042 0,333 0 2 1,133 11,0041 O 092 0,98 17,3

where R=p¢/py; Z =rf/(c3-rd; S=?-r2)/(t?-rd; G, is the momentum transmitted to the central flow in the
axial direction in a unit of time; and G and P are functions of y, namely,

G=1~WT1 p__2_ 9 (Y+1)v/(v—i)

Y Y1
For the ratios D/U and w+/U their definition domain is given by
a>1, >0 a>=8. (4.3)

The first two constraints of (4.3) result from the physical meaning of the initial data which define ¢ and B, the
third is the condition for the supersonic flow of the DP to be present in the critical section.

In numerical experiments with liquid hydrogen one had to bear in mind that the initial pressure was of the
order of 1 atm. The obtained values of the velocities of the channel waves are M > 10 which enables one to
employ the formulas (4.2).

Let the above-calculated 11 variants Q, and Q, be the numerical values of the work accomplished by the
DP on a unit length of inner or outer surface. Then the relations
Ts
Gy= | p2nfdf = Qp, Gy Q,
To
are valid, and this enables one to replace Gi/GO in the expressions for a by Q1/Qo- If for ¢ one uses the
numerical values of ¢ for z;,, then o« and 8 and hence, wyand U, can be calculated.

The initial data as well as the computation results using the formulas (4.2) for y =1.4 are given in Table
2; it can be seen that all the ¢ and B pairs satisfy the inequalities (4.3), and that the ratios w,/U are close to
unity. Using (4.1) it can be established that for all variants one has

—0.02 > o/U — 1 2 —0.2. _
Under such constraint the comparison of the values of U from Table 1 and Table 2 obtained in a different man-
ner shows that the terms of the form 9 (w/U—-1)F/8t have no marked effect on the velocity of the two-layer de-

tonation. I is obvious that the discrepancy in the last variant is due to the lack of parameter uniformity in the
critical section.

In the general case, it follows from (4.1) and (4.2) that

B o e e e AL

These relations provide a basis for the use of one-dimensional approximation not only for U>D, but also if U
is comparable with D.

It should be mentioned that for the boundary conditions of the problems under consideration to be deter-
mined with regard to the starting parameters p, and U one only needs to know the product p U2 The latter
enables one to extend the numerical results to the processes in which p, and U vary over wide ranges but such
that the product p,U? remains constant.

The author would like to express his thanks to V. V. Mitrofanov for his initiative in carrying out this
work. .
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GENERATION OF A PLANE RELAXATION WAVE
IN AN AEROCOLLOIDAL SUSPENSION OF SOLID PARTICLES

A. D. Gol'tsiker, S. V. Tarakanov, UDC 532.593;541.182.3
O. M. Todes, and S. A. Chivilikhin

The analysis of propagation of a stationary shock wave in an aerocolloidal suspension [1-4] has shown that
behind the shock front is a rather broad relaxation zone, in which the suspended particles are gradually ac-
celerated by the gas flow. Inthat zone the particles are heated up to the temperature of the gas, heat is re-
leased due to the work of friction forces, and various phase transitions are possible, for example, melting and
evaporation of the colloidal particles. It is exceedingly difficult to obtain an analytic solution of the system of
differential equations describing the gas and particles; as a rule, a computer is recruited as an aid to finding
solutions for various special cases.

Even more insurmountable are the mathematical difficulties associated with investigation of the transient
part of shock generation in an aerocolloid, as in the case, for example, when a shock wave traveling through a
pure gas impinges on a domain filled with an aerocolloid.

For a small volume concentration of particles the leading edge of the shock wave enters the aerocolloid
virtually unchanged. Immediately, however, two contact surfaces are formed: 1) the boundary of the moving
cloud of particles; 2) the boundary (interface) between the original (before arrival of the shock) dusty gas and
the clean gas.* The particles set in motion generate disturbances in the surrounding medium in the form of
rarefaction and compression waves. Inasmuch as the leading edge of the shock waves moves relative to the
trailing gas at less than the velocity of sound, the disturbances overtake the shock front and begin to deform it.
Finally a reflected shock is formed and propagates in the opposite direction.

*The second boundary is logically called the gas contact surface. Its trajectory is clearly the trajectory of the
gas mass present at the initial instant at the nonmoving interface between the gas and aerocolloid.
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